无论是小考,高考亦或是中考,平时的开云学习习惯对于一个学生来说,都至关重要,往往直接决定了考试的成与败。有人说21天可以养成一个良好的习惯,作为学生的你开云体育?能坚持吗?
1
如何培养高分习惯
提高计算正确率、笔记、考试
1、提高初中数学计算正确率的窍门
真正的去理解解题方法,做完一道题目之后当堂回顾,把解题思路复述出来,并将做错的题抄在错题本上,经过一段时间的努力,一定能将解题的错误率降低,并养成良好的学习习惯。
所以,我开云官方网站们经常说,学数学很容易,秘诀就是:会做的做对,错过的不要再错如何提高中考数学的计算的正确率,以下有四种方法以供借鉴:
第一:要对计算引起足够的重视
总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。
其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。
至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。在这个复杂的过程中,稍有粗心大意就会使全题计算错误。
因此,计算时来不得半点马虎。
第二:要按照计算的一般顺序进行
首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;
其次,观察题目特点,看看几步运算,有无简便算法;
再次,确定运算顺序。在此基础上利用有关法则、定律进行计算;
最后,要仔细检查,看有无错抄、漏抄、算错现象。
第三:要养成认真演算的好习惯
有些同学由于演算不认真而出现错误。数据写不清,辨认失误。打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。所以一定要养成有序排列竖式,认真书写数字的良好习惯。
第四:不能盲目追求速度
计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。所以,宁愿计算的速度慢一些,也要保证计算正确,提高计算的正确率。
2、做好数学课堂笔记的五个技巧
首先,要准备一个专门用来记数学笔记的本子。
一个专门的本子非常重要。往往同学们会把老师讲课时需要记录的内容随手记在书上、或者试卷上,这样时间久了就容易丢失,想要翻看的时候找起来也很费事,甚至找不到。而有一个专门的笔记本,我们就相当于有了一个移动的存储器,可以方便、快捷地翻看。
其次,就是如何做好数学笔记。
有的同学在记笔记的时候喜欢把老师写的每一个字、讲的每一句话都记下来,一堂课下来,紧张忙碌不说,势必会影响你听课的效果,一堂课只顾着写了,而没有认真去思考、理解,到头来可能是事倍功半。
其实做笔记应掌握以下几个要点:
第一:记提纲
老师每次上课都会在黑板的左侧写出本节课的提纲,这都是老师上课前准备好的本节课的内容,有了它,可以知道本节课大概都讲了什么内容。
第二:记附加
老师在上课的时候有时会加入一些课本没有的话语,而这些都是对知识的总结,往往也是同学们容易忽视的地方,这些内容可以启发学生思维的延展性,并且也利于学生基本技能的提升。
第三:记例题
老师每次课上都会有一些比较新颖的例题来为同学们展示,通过例题传授给学生常用的解题技巧与方法。记录这些例题,方便同学们对于例题的方法融会贯通,是提高成绩的显著方法。
第四:记疑问
有的同学在课堂上听老师讲课,难免有不明白的地方,但是又怕影响大家上课,而不敢提问,想要课下解决,但是很可能下课就忘记了,这样疑问就积累下来了,到了最后,越积越多,以至于成绩总是不提高。如果能把当时的问题记在笔记本上,这样在下课的时候即使忘记了,回到家一翻笔记也看到了,这个时候及时问家长或者同学。马上解决问题是重点,不要把问题留给明天。
第五:记总结
每学完一段知识,一个新的知识,或者学到新的解题方法,都要把自己的心得记录下来,然后仔细地去咀嚼、去思考:知识的重点在哪里、新的解题方法好在哪里、以后看到类似的问题怎么去运用。有了这样的思考,那么今后就不会一看到没见过的题,就担心自己是否有能力解决,而是考虑这个问题和我学过的哪个知识相关,找到这个题目基本应该用什么样的方法去解决。形成自己的解题思路,这样对于提高学生的本身能力是非常有帮助的。
最后:如何利用好数学笔记
数学笔记不能当作一个展示品给别人看,而是要像珍藏品一样自己时常去看。每天最好给自己安排10分钟左右的时间把今天所记的笔记认真、仔细地看一遍,巩固学过的知识。并且在每次的月考、期中、期末前都要认真再看一次,并且把笔记里面的内容前后连结到一起,形成一个知识结果框架,这样,才能学好数学,提高成绩。
3、初中数学考试的5个小技巧
方法一:检查基本概念
基本概念、法则、公式是同学们检查时最容易忽视的,因此在解题时极易发生小错误而自己却检查数次也发现不了,所以,做完试卷第一步,在检查基本题时,我们要仔细读题,回到概念的定义中去,对症下药。
方法二:对称检验
对称的条件势必导致结论的对称,利用这种对称原理可以对答案进行快速检验。
方法三:不变量检验
某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。利用这种变化过程中的不变量,可以直接验证某些答案的正确性。
方法四:特殊情形检验
问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例来检验答案是非常快捷的方法。
方法五:答案逆推法
相信这种方法很多学生都会,在求出题目的答案后,可将答案重新代回题目中,检验题目的条件是否还成立。但是这种方法一定要注意,要想想有没有可能存在多解的情形。
总而言之,要想提高检查的次数与效率,又想避免枯燥的重复,就需要一题多解去检验。
一道题,使用原来的方法去做,固然也能发现错误,但是人都是有惯性思维的,很容易就忽视了一些小的错误。
如果在检查时,我们都尽量去想一些新的方法,那样,一来可以检查答案的对错,二来可以减少机械性重复产生的枯燥感,三来思考新的解法也是锻炼思维的一种手段,四来能将试卷中的题的作用发挥到最大,可以说是一举多得的好措施。
此外,直接检查作为最基础的方法,要重视技巧直接检验法就是围绕原来的解题方法,针对求解的过程及相关结论进行核对、查校、验算。为配合检查,首先应正确使用草稿纸。
建议大家将草稿纸叠出格痕,按顺序演算,并标上题号,方便检查对照。其次,一定要细心细心再细心,每一个细节都需要仔细推敲,而不能“想当然”,记住“最安全的地方有时候也是最危险的地方”。
2
初中数学公式定理大全
111个
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
常见的初中数学公式
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理 三角形两边的和大于第三边
16.推论 三角形两边的差小于第三边
17.三角形内角和定理 三角形三个内角的和等于180°
18.推论1 直角三角形的两个锐角互余
19.推论2 三角形的一个外角等于和它不相邻的两个内角的和
20.推论3 三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理(SSS) 有三边对应相等的两个三角形全等
26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1 在角的平分线上的点到这个角的两边的距离相等
28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33.推论3 等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1 三个角都相等的三角形是等边三角形
36.推论 2 有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1 关于某条直线对称的两个图形是全等形
43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48.定理 四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
51.推论 任意多边的外角和等于360°
52.平行四边形性质定理1 平行四边形的对角相等
53.平行四边形性质定理2 平行四边形的对边相等
54.推论 夹在两条平行线间的平行线段相等
55.平行四边形性质定理3 平行四边形的对角线互相平分
56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60.矩形性质定理1 矩形的四个角都是直角
61.矩形性质定理2 矩形的对角线相等
62.矩形判定定理1 有三个角是直角的四边形是矩形
63.矩形判定定理2 对角线相等的平行四边形是矩形
64.菱形性质定理1 菱形的四条边都相等
65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66.菱形面积=对角线乘积的一半,即S=(a×b)÷2
67.菱形判定定理1 四边都相等的四边形是菱形
68.菱形判定定理2 对角线互相垂直的平行四边形是菱形
69.正方形性质定理1 正方形的四个角都是直角,四条边都相等
70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71.定理1 关于中心对称的两个图形是全等的
72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73.逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74.等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75.等腰梯形的两条对角线相等
76.等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77.对角线相等的梯形是等腰梯形
78.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81.三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82.梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83.(1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84.(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85.(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87.推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88.定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90.定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94.判定定理3 三边对应成比例,两三角形相似(SSS)
95.定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97.性质定理2 相似三角形周长的比等于相似比
98.性质定理3 相似三角形面积的比等于相似比的平方
99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
学霸来了
拥有来自清华/北大/复旦/交大等的顶尖名校的学霸师资
为全国中小学分享最有价值的学习经验
提供真人1对1名师在线辅导
点击下方“阅读原文”,报名参加清华北大学霸1对1免费名师测评课!
发表评论
评论列表
这个产品真的太棒了,用起来非常顺手,强烈推荐给大家! 客服态度很好,发货也很快,体验非常满意。
Fast shipping and great customer service. Very happy with my purchase. This is my third time ordering from this seller, and they never disappoint.
这个产品真的太棒了,用起来非常顺手,强烈推荐给大家! 这个产品真的太棒了,用起来非常顺手,强烈推荐给大家!